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ABSTRACT

Chrzanowski, A.. Chen, Y.Q. and Secord, J.M., 1983, On the strain analysis of tectonic movements using
fault crossing geodetic surveys. In: P. Vysko&il, A.M. Wassef and R, Green (Editors), Recent Crustal
Movements, 1982, Tectonophysics, 97: 297313,

A generalized approach 1o the analysis of deformation surveys has been developed by the authors and
utilized in the analysis of tectonic movements. The approach is applicable to any type of repeated
geometrical measurements (geodetic and non-geodetic surveys), any type of deformations including rigid
body displacements and strain, and geometrical configuration of the observation network. The approach
is hased on the least squares fitting of selected deformation models to the displacement field obtained
from repeated observations of deformations. The approach comsists of threc basic processes: (1)
preliminary identification of the deformation models; (2) estimation of the deformation parameters using
a generalized mathematical model for the least squares fitting; and (3) diagnostic checking of the
deformation models and the final selection of the “best” model based on global statistical tests and on
calculated significance levels of the deformation parameters. A numerical example is given using survey
data from four epochs of observations of a small geodetic network which was established across an active
fault in the Peruvian Andes.

INTRODUCTION

Generally, in deformation measurements by geodetic methods, whether they are
performed for monitoring engineering structures or ground subsidence in mining
areas or tectonic movements, two basic types of geodetic networks are distinguished
(Chrzanowski et al., 1981b):

(1) absolute networks in which some of the points are, or are assumed to be
outside of the deformable body (object) thus serving as reference points (reference
network) for the determination of absolute displacements of the object points;

(2) relative networks in which all the surveyed points are assumed to be located
on the deformable body.

In the first case, the main problem of deformation analysis is to confirm the
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stability of the reference points and to identify the possible single point displace-
ments caused, for instance, by local surface forces and wrong monumentation of the
survey markers. Numerous approaches have been suggested by different authors to
determine the stability of the reference points, for instance, methods developed by
Pelzer (1974), Heck et al. (1977), Lazzarini (1977). Niemeier (1979), Polak (1981),
and Van Mierlo (1981), just to mention a few. A comparison of some of the methods
has been the subject of studies by a special committee (Chrzanowska et al., 1981b) of
Commission 6 of F.I.G. (Fédération Internationale des Géometres). Once the stable
reference points are identified, the determination of the geometrical state of defor-
mation of the deformable body is rather simple.

In the case of relative networks, deformation analysis 15 more complicated
because, in addition to the possible single point displacements like in the reference
network, all the points undergo relative movements caused by strains in the material
of the body and by relative rigid translations and rotations of parts ol the body if
discontinuities in the material, for instance, tectonic faults, are present. The main
problem in this case is to identify the deformation model, i.e. to distinguish, on the
basis of repeated geodetic observations, between the deformations caused by the
extension and shearing strains, by the relative rigid body displacements and by the
single point displacements.

The geodetic monitoring of tectonic movements is usually done with relative
geodetic networks unless extraterrestrial observations are included in the network.
Thus the problem of identification of the deformation maodel is of primary impor-
tance in the analysis.

As far as strain analysis Is concerned, the computational procedures are well
known and have been applied in the analysis of tectonic movements for many years.
A brief review of some basic works on the subject is given by Vanicek and
Krakiwsky (1982). Recent papers by Margrave and Nyland (1980), Snay and Cline
(1980), Savage et al. (1981), Prescott (1981), and Chrzanowski and Chen (1982) serve
as a good sample of different approaches being used by different authors in the
strain analysis of tectonic movements. The approaches can be classified mnto two
basic types: (1) raw-observation approach; and (2) displacement approach. The first
approach is based on the caleulation of the strain components or their rates directly
from differences in the repeated observations. In the second approach the strain
components are calculated from differences in adjusted coerdinates (displacements)
ol the geodetic points.

In both approaches, if the number of repeated observations or the number of
derived displacements at discrete points is larger than the number of unknown
deformation parameters, then the least squares fitting of a deformation model is
performed to yield the parameters. If the same set of observables and weights is used
in both approaches and the same deformation model 1s fitted either to the raw
observations or to the derived displacements, the same solution for the deformation
parameters would be obtained. The displacement approach is favoured by many
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authors, for instance by Bibby (1975), Brunner et al. (1980) and Chrzanowski and
Chen (1982). Its main advantage 1s the possibility of using all observables in the
strain analysis, even if they differ from one epoch of observations to another as long
as they can be reduced to the same geodetic datum and can be used in the
calculation of displacements. On the other hand, the raw-observation approach
requires that the same observables and the same geometry of the network in each
epoch be maintained and utilized, Some other advantages of the displacement
approach are also mentioned below in this paper. However, the displacement
approach may be inconvenient or even impossible to use if the geodetic network has
configuration defects (lack of geometrical ties between the observables).

Usually more than ong¢ deformation model can be fitted to the observation data
and then arises the question of which of the models 1s the *best”. Other difficulties
and ambiguities in the deformation analysis develop when different minimum
constraints must be used in the least squares adjustments of individual epochs due to
changes in the network geometry or when the geodctic observations must be
combined with other types of observables such as tilt, stramn, and alignment
measurements.

In order to overcome the above problems the authors have elaborated on a
generalized approach to the analysis of deformation surveys which, in 4 systematic,
step-by-step manner, deals with the problems of analysis.

A description of the generalized approach and a numerical example are given in
this paper. The example deals with the deformation analysis of a small geodetic
network (Chrzanowski et al., 1981a) which was established across an active fault in
the Peruvian Andes in 1975 as a joint project between the University of New
Brunswick and the University of Alberta in Canada and the Geophysical Institute of
Peru. The network has been measured four times annually, in 1975, 1976, 1977 and
1978. The 1978 survey was performed by a German team (Welsch, 1979).

BASIC CRITERIA OF THE GENERALIZED APPROACH

In developing the generalized approach the authors required that the following
criteria be fulfilled:

(a) The approach should be applicable fo any type of delormations, 1.e. the same
computational procedure should be used in the analysis of single point displace-
ments in reference networks and in the analysis of rigid body displacements as well
as in the determination of strain components in relative survey networks.

(b) The same approach should be used for one, two and three-dimensional survey
data for the determination of deformation parameters either in a local domain or in
a time domain if the strain rates are also required.

(¢) Any type of survey data, i.e. not only geodetic (distances, angles, etc.) but also
physical-mechanical measurements of tilts, strains, pendula deviations etc. should be
utilized in a simultaneous analysis as long as the differences in the observed or
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quasi-observed (e.g. derived coordinates) quanltities could be expressed as functions
of relative displacements of the points at which the measurements were made.
Hence, any further reference to observations is taken to include possible quasi-ob-
servations.

(d) The approach should be applicable to any geometrical configuration of the
survey network including incomplete networks with configuration defects, In these,
isolated observations which are not connected to other points of the network would
be taken as long as approximate coordinates of all survey stations are given in the
same coordinate system.

(e) Different minimum constraints (including inner constraints) could be used in
the numerical processing of each epoch of observations as long as the same
approximate coordinates of points are used in each of the epochs.

The proposed approach is based on the least squares fitting of a selected
deformation model to the displacement field obtained from repeated observations of
deformations at discrete points on the deformable body. Since more than one
deformation model can be fitied to the given displacement ficld, the “ best” model is
selected on the basis of:

(1) an a priori knowledge, either actual or assumed, of the behaviour of the body,

(i1} a demonstrated deformation trend using the so called ““Fredericton Approach”
{(Chrzanowski et al, 1981) which is based on an examination of the differences of
observed quantities, or of quantities derived from adjusted coordinates, and an
examination of ploited displacements in a local coordinate system which are
obtained by using the “best” minimum constraints in the least squares treatment of
the data,

(iii) global statistical tests and examination of residuals and calculated signifi-
cance levels of the deformation parameters obtained through the process of fitting,

Thus, generally, the approach consists of threc basic processes:

(1) Preliminary identification of the deformation model.

(2) Estimation of the deformation parameters.

(3) Diagnostic checking of the deformation models and the final selection of the
“best” model.

These are briefly discussed below. Though the approach is applicable to 3-D
analysis in local or time domains, the description of the procedures will refer only to
a 2-D case in a local domain in order to facilitate a concise explanation.

PRELIMINARY IDENTIFICATION OF THE DEFORMATION MODEL

In each case of deformation analysis, when using the generalized approach the
whole area covered by the deformation surveys is treated as a noncontinuous
deformable body consisting of separate continuous deformable blocks. Thus the
blocks may undergo relative rigid body displacements and rotations and each block
may change its shape and dimensions. Thus in a 2-D analysis lor each block the
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following deformation parameters in an X, ¥ coordinate system must be considered:
two components (@, and b, or ¢, and g, etc.) of the rigid body displacement; a
rotation parameter w(x, 3 ); two extension strain components, € (x, y) and €,.(x, y);
and shearing strain, ¢, (x, y}.

For instance, in the case of single point displacement, the given point is treated as
a separate block being displaced as a rigid body in relation to the undeformed block
composed of the remaining points in the network.

The deformation of a block is fully described if a displacement function d( x, v) is
given for the whole block. Once the components dx{x, y) and dy(x,y) of the
displacement [unction are known, the strain components and the differential rota-
tion may be calculated at any point from the well known infinitesimal strain-dis-
placement relationships:

3 B 1/ 4 d
Exfadx, €y-—$dy, cv),—i(g;dy-l-g;dx (l)
and:

1{ 9 d
M_E(é;dy_a_ydx) (2)

The displacement function is determined through a polynomial approximation of the
displacement field. The general case would use the polynomials:

dx=as+ax+a,y+axp+ax’+ ... (3)
dy=by+bx+byv+bxy+bx*+... (4)

Depending on the selected deformation model, some of the coeflicients of the
polynomials (3) and (4) are taken to be zero. Examples of typical deformation
models are given below:

(a) Single point displacement or a rigid body displacement (Fig. 1a) of a group of
points (say block B) with respect to a stable block (say block 4); the deformation
model is:

dx,=0,dy,=0,dxy;=a,anddy, = b, (5)

aj

Fig. 1. Single deformation models: (1) rigid body displacement, (b) homogeneous strain and (c) rigid bedy
displacement plus different homogeneous strains,
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(b) Homogeneous strain (Fig. 1b) in the whole body without discontinuities; for
the whole body, the linear deformation model is:

dx=ax+a,yanddy=bx+b,y (6)
which, after substituting eqs. 1 and 2 into eq. 6 becomes:

dx =€ x T, ,y—wy (7)
dy=¢, x+e,y+ex (8)

In the above, special attention must be paid to the rotation parameter « which may
have to be included in this model {and also in other models) even if the absolute
orientation of the network is not available, depending on the computational con-
straints, as will be discussed below later on.

(¢) A deformable body with one discontinuity, say between blocks 4 and B, with
different linear deformations of each block plus a rigid body displacement of 8 with
respect to A (Fig. 1c):
dx,=axta,y
dyy=bx+byy
dxz=cy+cx+ ¢y
dyp=8o+ 8 x+g¥
In the above case, components Ax, and Ay, of a total relative dislocation at any
point i located on the discontinuity line between blocks 4 and B may be calculated
as:

Ax;' = de(x.'ﬂyJ)_dxA(xhyi)
A-Vi - d.})B(xJ’yr') _dyA(xi-’yr')

In general, a deformation model, if expressed by the displacement functions may

be briefly written in the matrix form:

d(x,y)=Be (9)

where d is a vector of displaccments, ¢ is a vector of unknown deformation
parameters (or the coefficients of the polynomials, B is a matrix containing elements
which are functions of positions of the observation points, and ol time if the rates of
deformation are needed.

Usually, the actual deformation model is a combination of the above simple
models or, if more complicated, it is expressed by non-linear displacement functions
which require fitting of higher order polynomials. However, if no a priori knowledge
on the expected model exists then the simplest reasonable model, one of the three
listed above for instance, with the fewest unknown parameters, is selected for the
preliminary fitting and testing. Here, the demonstrated deformation trend is of great
help in the identification of the deformation model.
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ESTIMATION OF THE DEFORMATION PARAMETERS

In order to determine the vector e, the number of known displacements at
discrete points must be, at least, equal to the number of unknown coelficients in the
deformation model. If the number of known displacements is larger than that of the
unknown coefficients, the deformation parameters are determined through the least
squares fitting.

In the generalized approach, the deformation model may be fitted either to
differences of coordinates (displacements) estimated from repeated observations of &k
cpochs or directly to differences of observed quantities, for instance distances,
angles, strains, tilts, etc.

In the latter instance one can either:

(1) transform all the observed quantities into changes of coordinates, even in the
case of there being configuration defects in the network; or

(2) express each difference of the observed quantities in terms of the components
dx(x,y)and d p(x, y) of the selected deformation model.

In the first case, if the observables belong to a complete geodetic network the
coordinates and derived displacements are estimated through the least squares
adjustment of individual epochs. If the observables are not properly connected
together (configuration defects) then differences of individual observations may be
transformed into differences of coordinates by introducing local constraints. For
instance, a change d/;; in 2 measured distance /,; between points / and j with known
approximate coordinates x" and y" may be transformed into relative displacements
dx; and d y, with respect to point i (or vice versa) by constraining (fixing) point / and
azimuth a?f calculated from the approximate coordinates, thus obtaining: dx; = d/,,
' sin(a?]) and dy, =d/, cos(a%). This could be regarded as a general approach using
displacements. The calculated dx, and d y, are used later in the process of fitting the
deformation model into the “observed” displacements (quasi-observables).

In the second case, the same difference df;; may be expressed in terms of the
displacement functions dx(x, y) and d y(x, y) using the Taylor’s series cxpansion:

x¥—x? x? X! U_ o
d/,; = %dx(xj,yj) —J—Tde(xi,}’i) +'~v{f ; ’y’ dy(x;.y)

if i if

0 0
Yi =¥
- J] dy(‘xf‘yi)

f

in which the functions dx{x, y) and d y(x, y) are replaced by the proper portions of
the polynomials (3) and (4) depending on the selected deformation model. Thus in
short, the vector of differences d/ of any type of observation may be expressed in
terms of the deformation model by:

dl = ABe (10)
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where A is the design matrix of the observation equations. This is the raw observa-
tion approach.

If all the elements of the 4/ vector are really quasi-observed displacement
components, then the A matrix is the identity and (10) reduces to the same form as
(9).

It does not matter which of the two above approaches is followed in the
preparation of the observation data for the polynomial approximation of the
displacement field because the generalized approach can handle either or both types
of fitting in a simultaneous solution. However, if the whole obscrvation network or,
at least, a large portion of it is a complete geodetic network (without configuration
defect) then the first (displacement) approach is recommended so that the displace-
ments of all the points are derived from the observed quantities through the least
squares estimation of the coordinates in each epoch. The least squares adjustment
allows for screening of the observation data for outliers and for statistical evaluation
of the quality of the observations. Besides, the displacement approach gives a better
picture of the deformation trend than the raw observation approach through the
above mentioned examination of the display of the plotted relative displacements of
points.

The process of the least squares determination of the e parameters is based on the
null hypothesis:

Hy: E(xy)=§=E(x,— A Be)
with an alternative hypothesis:
H,: E(x;)=§=E(x,—ABe)

with E(.) being the expected value, x; being the vector of coordinates (il all observed
quantities have been transformed into coordinates) or other observed quantities in
epoch i (i=0, 1,..., k) and £ being a vector of unknown constants.

As mentioned before, if all the observations of deformations have been trans-
formed into differences of coordinates, then the vectors x; contain only coordinates
of points (quasi-observables) and matrix A becomes the identity matrix. For simplic-
ity of derivation, the matrix A is omitted in the further discussion (it may be treated
as a part of a new B matrix).

The above null hypothesis leads to the generalized mathematical model:

X, +u,=§ (11)
x,+6,=f+Be (12)
where v, (i =0, 1,.... k) is a vector of residuals.

In order to solve eqs. 11 and 12 for e, the population of the x, vectors must be the
same in each epoch of the simultaneously compared observations even if the actual
number # and type of observations differ from one epoch to another. This is
achieved by placing artificial observations (for instance their estimated approximate
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values) with weights equal to zero in place of the missing observations in the x,
vectors. The least squares criterion applied to the above model with k& + 1 epochs of
ohservations leads to the following normal equations:

k k k
Z Pi E R BI £ Z in
0 1 ]

k
BrT l).f I‘-

k k
LB'P Y B'PB | |e
1 1 1

where the P, are weight matrices of the observations (quasi-observations) and are
singular in general.

These normal cquations are singular with rank defect d(X{P,)=4d, so that no
unique solution exists. Eliminating § from the equation yields invariant deformation

parameters e for any choice of the generalized inverse (LEP) provided B, is selected
properly:

k k k ~ % L K k - &
é={zBTRBI—>:B;-"Pf e ERB,} {ZBTP,-x,-—EB,TR- e, ZP,-x.}
1 ! 0 0 I ! 0 0

—Q, w (13)

The covariance €, = d47Q, with 6;, the variance [actor, being estimated from
preadjustment evaluation of the observations (e.g. through a simultancous least
squares adjustment of coordinates for k& + 1 epochs).

Il only two epochs of observationd are analysed at the same time and in cach
epoch the elements of the x, vectors were obtained using the same minimum
constraints in both epochs then the equations (11) and (12) may be subtracted [rom
each other leading to a simpler model:

d+v,=Be (14)
where d = x, — x, and v; = v, — v, with the covariance matrix:
Cd=a‘(llz(Qx,+on):602Qd (}5)

where 47, the weighted variance factor, and the cofactor matrices Q) are oblained
from the parametric least squares estimations of the x; vectors.
The solution is then obtained from:

é=(B"Q;'B) 'B'Q; (16)
with a covariance matrix:

C.=4(B'Q;'B) =4,Q, (17)
Thus the solution (16) which represents the aforementioned displacement approach

to strain analysis is a special case of the generalized approach.
In the above, caution should be exercised in the computations if the displace-
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ments d and Q, are derived from a least squares solution with mimimum constraints.
For instance, in the adjustment of a trilateration or triangulateration (mixed
triangulation and trilateration) network, a point P, and the direction from P, to a
second point P, act as constraints on the degrees of freedom of the configuration.
This is imposed by fixing the coordinates (x,, y,) of P, which is then taken as the
origin of the local coordinate system (Chrzanowski and Chen, 1982) and by
assigning a very small variance to the azimuth « . Consequently, when comparing
the coordinates under the same constraints at two epochs, the displacement of P, 1s
confined to occur in the direction of the azimuth «;, so that:

dx,/dy,=tan(a,,
If, for instance, the displacement field is approximated by the model expressed by

¢gs. 7 and § then the observation equations for the displacement components of
point P, are:

dx;+v,,=€.x;+e€, ¥, —wy
dyj * Uy = €y + €Y + wXx;

If the deformation parameters are estimated from (16), then the very small variance
of «;; constrains these to have the relation:

X T €, ) —wy,

€ X, ey Hwx,

= tan(a;,)

sO that:

w=1(e,—¢)sin(2a,,) +e, , cos(2a,;)

Thus, the variation associated with the change in minimum constraints 1s absorbed
by the change in the value of «, rendering the values of the other strain parameters
invariant, If w were omitted (considered as being zero) in the model, as it is done by
some authors when no absolute orientation of the network is available (no ties to
external reference points), then the calculated strain parameters would vary with the
choice of the minimum constraints. The same applies to other deformation models,
whenever the constrained direction «,; is within the deformed part of the investi-
gated body. For instance, in the case of rigid body displacements as shown in Fig.
la, if point i of the constrained direction would be in block 4 and point j in block B,
then eqgs. 5 of the deformation model would be written in the form:

dxA:_W)’» d.yA:wx’ de=a0-wy’anddy3=b0+wx

Otherwise, the values of the parameters a, and b; would be dependent on the choice
of the direction «;, to be constrained. The rotation parameter w in the above cases
plays the role of a nuisance parameter without any practical meaning. However, if
Q, is calculated in a solution using inner constraints and if Q7 , the pseudoinverse of
Q. 1s used 1n eq. 16, the omission of w is justified when no external orientation of
the network is included in the observables.
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CHECKING THE DEFORMATION MODEL AND SELECTION OF THE “BEST” MODEL

As i1s usually done in the least squares estimation process, the quadratic form of
the residuals is employed in a global test on the appropriateness of the model. The
null hypothesis is that the variance factor 87, estimated by the adjustment yielding
the & is the same as the a priori value, 4}, from the combination of any pair epoch
adjustments for £

Hy: 65 =dj versus H,: 62 = 6;

The 47, is calculated, for egs. 11 and 12, by:

k

 TdRy
a2 v Py Q
G5, = = (18)

f. f.
where P is the weight hypermatrix:

Py

Pl
P ——
Pk

and f, degrees of freedom is the rank of P minus (u — d) where u is the number of
unknowns. The statistic then becomes:

72 = %oe | (19)

This is compared against the critical value F(/f,, f, &) with f being the degrees of
freedom associated with the estimation of 7. The null hypothesis is rejected at the a
level of significance if the statistic exceeds the critical value. The simpler case, eq. 14,
leads to the statistic:

2 _ ﬁ _ 5 Q,'v, (20)
& (Qp—d-u)é;

Now, the null hypothesis is rejected if the statistic exceeds the critical value, 1.e., if
T:>FQ2p—d—u, f, «). The degrees of freedom for the numerator is 2p—d—u)
in which there are p points in the network, having a defect of 4 and u is dim {e}. If
the null hypothesis is not rejected, then the model is acceptable,

The significance of the individual parameters is revealed by considering each in
its standardized form:

é é,
e = =
r E V(é{)zqea)




308

with the g, being the /th diagonal element of Q.. The level of significance, «,,, 18
obtained from:

é,Z\.ﬁ"'F(l,f, ) (21)
Or, a group of u, parameters, ¢, which is a subset of &, may be considered with their
quadratic form in the numerator of:
é'Q e
T2=Lf’2'= Flu,f, a) (22)
u,0p

from which the level of significance « is obtained. The numerator has degrees of
freedom of u; which is the rank of Q,,, a submatrix of Q, from (13) or (17).

Because the behaviour of the deformable body is usually not completely known,
there is often more than one possible model that may be appropriate (accepted by
the global test). The choice of the “best” of the acceptable models has regard both
for statistical significance of the parameters and for physical appropriateness, which
would have justified consideration a priori.

SUMMARY OF PROCEDURES WHEN USING THE GENERALIZED APPROACIH

(1) Adjustment (if applicable) of each epoch of observations for the evaluation of
accuracy ol observations and for the detection of outliers using 7, cnterion (Pope,
1976), for instance.

(2) Comparison of two epochs; use of the Fredericton approach to the analysis of
relatively stable points; choice of “best” minimum constraints to yield the “best”
pattern of displacements.

(3) Choice of deformation model based on a priori considerations and the
displacement pattern.

(4) Estimation of deformation parameters and their covariance.

(5) Global test on the deformation model; testing groups of parameters or an
individual parameter for significance.

(6) Comparison of models and choice of “best” model.

(7) Graphical display of the selected model or models using simple rectangular
blocks to represent the zones of the deformable body.

EXAMPLE
Description of the survey data

The aforementioned Peruvian network, known as the Huaytapallana network
(Chrzanowski et al., 1981b), or as Huancayo network (Margrave and Nyland, 1980)
has been analyzed by the authors using the described approach.

The network (Fig. 2) is located in the Huaytapallana mountain range of the
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Fig. 2. Huaytapallana network.

Peruvian Andes at an average elevation of 4500 m and crosses a reverse fault which
was aclivated by an earthquake in 1969 (Deza, 1971). At that time, a verucal
displacement of 1.6 m and a horizontal strike-slip motion of 0.7 m were recorded.
When designing the network and the survey (Nyland et al., 1979; Chrzanowski et al.,
1981a) no additional information on the expected deformations was available. The
goal of this microgeodetic survey was to detect relative rigid body displacements of
groups of peints on both sides of the fault with a standard deviation in the order of
3 mm, or better, and to determine strain components with standard deviations in the
order of 3-107°.

Due to difficult topographic conditions only horizontal surveys were carried oul.
For economical reasons only standard surveying equipment could be used. The

TABLE 1

Type and standard deviations of observations, Huaytapallana Network

Type of 1975 1976 1977 1978
observations *
Angles
N 73 81 2
a .67 227 39
Directions
N - - 91 91
o 287 2,57
Distances
N 60 65 74 70
o {mm} 4.0 35 2.7 5.3

* N = number of observations.
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cleven points of the network were monumented in rock outcrops using brass
markers. Table | summarizes the type and number of observables and their csti-
mated standard deviations in four epochs of observations.

Identification of the deformation models

Due to the lack of geophysical information on the expected deformation of the
investigated area, several simple models were selected for further testing starting
with the simplest assumption that no deformations had taken place (dx =0 and
dy =0 for the whole area), followed by a model of the ngid body displacement
along the fault line of the northern vs. southern parts of the network, then a
homogeneous strain model for the whole area, and then different homogeneous
models on both sides of the fault. In addition, some more complicated models had
been selected on the basis of the preliminary trend analysis using the aforementioned
Fredericton approach.

Figure 3 gives an example of the trend analysis based on the examination of
displacements derived [rom the least squares adjusted coordinates in epochs
1978-1977. In this pair of epochs points 4 and /7 indicated a movement separate
from the remaining portion of the network, thus indicating the possibility of an
additional discontinuity runmng from the fault line through the vicinity of point !
and isolating these two points. This trend had been confirmed also by the examina-
tion of epochs 1976-1975.

An examination of differences of angles and distances derived from the adjusted
coordinates of four epochs led also to the suspicion that point 2 was unstable.
Therefore, additional deformation models had been selected for further investigation
which took under consideration the possibility of the separate rigid body displace-
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Fig. 3. Relative displacements of points 1978-1977 in the Huaytapallana network.
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ments of points 4 and 7/ as one block and point 2 as another block with respect to
the remaining portion of the network.

Results and selection of the “best” model
The observation data allowed the least squares adjustments of coordinates using

the same minimum constraints in each pair of epochs. Therefore, solutions for é and
C, of the selected deformation models could be obtained using the eqgs. 14 17. A

TABLE 11

Deformation models and global tests, ITuaytapallana Network

Global Tests
Model Peformation Model

2

o Epochs T : FQEZ
1. No delormation "ie='75 1.48<1,63
dx = 0 Y77-"76 1.38<1.63
4 - G YiE-'77 1.44<1.63
y = TIR-175 0.80<1.63
2. _ _ 7675 1.35<1.69
dx,= 0 dxg=a, "II-'76 1.39<1.68
~ "IH-'77 0,92<1.68
dy,= 0 dyy= by 178-175 0.60<1.69
3 y dx= & x + £y - wy T76-175 1.32<1.71
x 4 "77-176 1.35< 1.7
- — - dy= & x+ Ly 4+ ux '78-"77 1.15<1.71
¥ ¥ 178-175 0.68<1.71

e X
4. e i .
76-'75 1.43<1.76
77-776 1.51<1.76
178-'77 0,91 <1.76
178-"75 0.67<1.76
5.

'76-"75 0.44 < 1.73
177-'76 1.00<1.73
178-"77 0.37<1.72
*78-'75 0.69<1.73
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total of eight deformation models were fitted to the data and examined. Table II
illustrates five models which had been accepted at the 95% confidence level by the
global statistical test (20). Table III summarizes the results of the least squares
estimation of the deformation parameters and their probability levels Pr% calculated
from (21) and (22) as Pr% = (1 — «) 100.

As one can see, the first model, “no-deformation™, had passed the global tests at
the 95% confidence level. However, after a close examination of the results, model
No. 5 had been accepted as the “best” on the basis of the indicated trend of
displacements, high confidence levels (> 99%) of its parameters and very favourable

TABLE III

Results of the least squares fitting of deformation models, Huaytapallana Network

Model Deform. 1976-1975 1977-1976 1978-1977 1978-1975
No. parameters e Pr7 e, Prk e, Pr% e Prz
i i i i
L ]
1. - - - - -
2. a [em) 1.8 89% ~1.6  89% -3.4 99% -3.2  97%
o
b [m] 2.2 94% 0.0 1% -3.7  99% -1.8  75%
(ag+bg)% 2.9  53% 1.6 73% 4.2 >90% 3.6 93%
3. e [ustrain] -1.6 86% -0.4 332 1.6 81% ~0.4  21%
e, [ustrain] -2.6 BO¥ 0.8 33% 3.8 89% 2.0 55%
. [ustrain] 1.6 91% 1.7 96z 2.1 §4% 2.5 95%
4. Ex. [ustrain] -1,7 88% -0.4 37% 2.0 90% -0.2 117
g [ustrain] 0.4 10% 2.5  54% -2.5 41% 1.8  28%
ey [pstrain] -0.8  36% 2.1 B4% -1.0 38% 1.1 39%
a [am] 1.3 5% 0.7 28% 4.8  95% 2.2 62%
b, (ma] 1.6  54% 1.2 46% 4.4 BBX -2.7  63%
5. a ~2.6  96% 3.7 »99% 0.8 37% 0.0 1%
o
-2.9  94% 1.2 582 -0.4  16% 1.5 54%
o
2, 2y% 0.8 15% 1.5 26%
(a_+b ) 3.9 >99% 3.9 »99% . .
¢, lmm] 2.7 99% 0.3 22% -4.8 >99% -1.4  65%
g [mm] 1.2 63% -0.0 1% 4.0 99% -2.9  91%
(&)

2.k

{c2+£ } 3.0 99% 0.3 4% 6.2 >99% 3,2 88%
o “o
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Fig. 4. The *best” deformation models for different epochs of observations, Huaytapallana network.

global tests. Figure 4 gives a graphical display of the estimated deformations of the
arca covered by the survey network using the “best” deformation model. In this
model, block € contains peints 4 and 77 of the network and block B contains point
2. Most probably, the estimated relative displacements of the blocks, particularly of
point 2, are of a local, non-tectonic nature, such as surface movements of the marked
survey points. However, the movement of points 4 and // as one block, if not
coincidental may indicate an additional crustal discontinuity and an action of
tectonic forces. Only additional future remeasurements of the network will allow for
more concrete conclusions.

It is interesting to note that the survey data of the Huaytapallana network were
also analyzed by Margrave and Nyland (1980). They considered only the homoge-
neous strain model in their analysis. They concluded that between 1975 and 1976 the
area of the survey experienced a left lateral shear strain of about — 3 microstrains
which was possibly associated with tensional straining perpendicular to the fault.
From 1976 to 1978 a right lateral shear strain of about + 3 microstrains occurred in
this area and was associated with a probable tensional straining parallel 1o the fault.
In their analysis, Margrave and Nyland used the raw-observation approach, thus not
being able to utilize all the observables which differed from one epoch to another.
This may partially explain the numerical deviations from the values shown for model
No. 3 in Table I11. However, the overall conclusions would be in agreement with the
results of two papers if the model No. 3 were accepted as the “best” model. Since
that was not the case, the comparison of the final results indicates how important it
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is to follow the proposed generalized approach to analysis with a careful examina-
tion of more than just one deformation model.

CONCLUSIONS

Deformation surveys require a very complex and sophisticated analysis in order
to avoid a misinterpretation of the geometrical status and behaviour of the deform-
able body. The generalized approach developed gives a new mathematical tool to
handle the complex deformation analysis in a comparatively easy way with [ull
utilization of statistical testing and logical judgement in a systematic, step-by-step
manner. Only a bricf introduction to the new approach has been given in this paper.
A full evaluation of the generalized approach with additional numericatl examples
will be given in a separate technical report (Chen, 1983).
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